Friday, 3 July 2015

Scraping data from a list of web pages using Google Docs

Quite often when you’re looking for data as part of a story, that data will not be on a single page, but on a series of pages. To manually copy the data from each one – or even scrape the data individually – would take time. Here I explain a way to use Google Docs to grab the data for you.

Some basic principles

Although Google Docs is a pretty clumsy tool to use to scrape webpages, the method used is much the same as if you were writing a scraper in a programming language like Python or Ruby. For that reason, I think this is a good quick way to introduce the basics of certain types of scrapers.

Here’s how it works:

Firstly, you need a list of links to the pages containing data.

Quite often that list might be on a webpage which links to them all, but if not you should look at whether the links have any common structure, for example “http://www.country.com/data/australia” or “http://www.country.com/data/country2″. If it does, then you can generate a list by filling in the part of the URL that changes each time (in this case, the country name or number), assuming you have a list to fill it from (i.e. a list of countries, codes or simple addition).

Second, you need the destination pages to have some consistent structure to them. In other words, they should look the same (although looking the same doesn’t mean they have the same structure – more on this below).

The scraper then cycles through each link in your list, grabs particular bits of data from each linked page (because it is always in the same place), and saves them all in one place.

Scraping with Google Docs using =importXML – a case study

If you’ve not used =importXML before it’s worth catching up on my previous 2 posts How to scrape webpages and ask questions with Google Docs and =importXML and Asking questions of a webpage – and finding out when those answers change.

This takes things a little bit further.

In this case I’m going to scrape some data for a story about local history – the data for which is helpfully published by the Durham Mining Museum. Their homepage has a list of local mining disasters, with the date and cause of the disaster, the name and county of the colliery, the number of deaths, and links to the names and to a page about each colliery.

However, there is not enough geographical information here to map the data. That, instead, is provided on each colliery’s individual page.

So we need to go through this list of webpages, grab the location information, and pull it all together into a single list.

Finding the structure in the HTML

To do this we need to isolate which part of the homepage contains the list. If you right-click on the page to ‘view source’ and search for ‘Haig’ (the first colliery listed) we can see it’s in a table that has a beginning tag like so: <table border=0 align=center style=”font-size:10pt”>

We can use =importXML to grab the contents of the table like so:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]“)

But we only want the links, so how do we grab just those instead of the whole table contents?

The answer is to add more detail to our request. If we look at the HTML that contains the link, it looks like this:

<td valign=top><a href=”http://www.dmm.org.uk/colliery/h029.htm“>Haig&nbsp;Pit</a></td>

So it’s within a <td> tag – but all the data in this table is, not surprisingly, contained within <td> tags. The key is to identify which <td> tag we want – and in this case, it’s always the fourth one in each row.

So we can add “//td[4]” (‘look for the fourth <td> tag’) to our function like so:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]//td[4]“)

Now we should have a list of the collieries – but we want the actual URL of the page that is linked to with that text. That is contained within the value of the href attribute – or, put in plain language: it comes after the bit that says href=”.

So we just need to add one more bit to our function: “//@href”:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]//td[4]//@href”)

So, reading from the far right inwards, this is what it says: “Grab the value of href, within the fourth <td> tag on every row, of the table that has a style value of font-size:10pt”

Note: if there was only one link in every row, we wouldn’t need to include //td[4] to specify the link we needed.

Scraping data from each link in a list

Now we have a list – but we still need to scrape some information from each link in that list

Firstly, we need to identify the location of information that we need on the linked pages. Taking the first page, view source and search for ‘Sheet 89′, which are the first two words of the ‘Map Ref’ line.

The HTML code around that information looks like this:

<td valign=top>(Sheet 89) NX965176, 54° 32' 35" N, 3° 36' 0" W</td>

Looking a little further up, the table that contains this cell uses HTML like this:

<table border=0 width=”95%”>

So if we needed to scrape this information, we would write a function like this:

=importXML(“http://www.dmm.org.uk/colliery/h029.htm”, “//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]“)

…And we’d have to write it for every URL.

But because we have a list of URLs, we can do this much quicker by using cell references instead of the full URL.

So. Let’s assume that your formula was in cell C2 (as it is in this example), and the results have formed a column of links going from C2 down to C11. Now we can write a formula that looks at each URL in turn and performs a scrape on it.

In D2 then, we type the following:

=importXML(C2, “//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]“)

If you copy the cell all the way down the column, it will change the function so that it is performed on each neighbouring cell.

In fact, we could simplify things even further by putting the second part of the function in cell D1 – without the quotation marks – like so:

//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]

And then in D2 change the formula to this:

=ImportXML(C2,$D$1)

(The dollar signs keep the D1 reference the same even when the formula is copied down, while C2 will change in each cell)

Now it works – we have the data from each of 8 different pages. Almost.

Troubleshooting with =IF

The problem is that the structure of those pages is not as consistent as we thought: the scraper is producing extra cells of data for some, which knocks out the data that should be appearing there from other cells.

So I’ve used an IF formula to clean that up as follows:

In cell E2 I type the following:

=if(D2=””, ImportXML(C2,$D$1), D2)

Which says ‘If D2 is empty, then run the importXML formula again and put the results here, but if it’s not empty then copy the values across‘

That formula is copied down the column.

But there’s still one empty column even now, so the same formula is used again in column F:

=if(E2=””, ImportXML(C2,$D$1), E2)

A hack, but an instructive one

As I said earlier, this isn’t the best way to write a scraper, but it is a useful way to start to understand how they work, and a quick method if you don’t have huge numbers of pages to scrape. With hundreds of pages, it’s more likely you will miss problems – so watch out for inconsistent structure and data that doesn’t line up.

Source: http://onlinejournalismblog.com/2011/10/14/scraping-data-from-a-list-of-webpages-using-google-docs/

Friday, 26 June 2015

Data Scraping - What Are Hand-Scraped Hardwood Floors and What Are the Benefits?

If you love the look of hardwood flooring with lots of character, then you may want to check out hand-scraped hardwood flooring. Hand-scraped wood provides a warm vintage look, providing the floor instant character. These types of scraped hardwoods are suitable for living rooms, dining rooms, hallways and bedrooms. But what exactly is hand-scraped hardwood flooring?

Well, it is literally what you think it is. Hand-scraped hardwood flooring is created by hand using specialized wood working tools to make each board unique and giving an overall "old worn" appearance.

At Innovation Builders we offer solid wood floors finished on site with an actual hand-scraping technique followed by stain and sealer. Solid wood floors are installed by an expert team of technicians who work each board with skilled craftsman-like attention to detail. Following the scraping procedure the floor is stained by hand with a customer selected stain color, and then protected with multiple coats of sealing and finishing polyurethane. This finishing process of staining, sealing and coating the wood floors contributes to providing the look and durability of an old reclaimed wood floor, but with today's tough, urethane finishes.

There are many, many benefits to hand-scraped wood flooring. Overall, these floors are extremely durable and hard wearing, providing years of trouble-free use. These wood floors remain looking newer for longer because the texture that the process provides hides the typical dents, dings and scratches that other floors can't hide so easily. That's great news for households with kids, dogs, and cats.

These types of wood flooring have another unique advantage as well. When you do scratch these floors during their lifetime, the scratches are easily repaired. As long as the scratch isn't too deep you can make them practically disappear without ever having to hire a professional. It's simple to hide the scratch by using a color-matched stain marker or repair kit that is readily available through local flooring distributors. These features make hand-scraped hardwood flooring a lot more durable and hassle-free to maintain than other types of wood flooring.

The expert processes utilized in the creation of these floors provides a custom look of worn wood with deep color and subtle highlights. When the light hits the wood at different times during the day, it provides an understated but powerful effect of depth and beauty. They instantly offer your rooms a rustic look full of character, allowing your home to become a warm and inviting environment. The rustic look of this wood provides a texture, style and rustic appeal that cannot be matched by any other type of flooring.

Hand-Scraped Hardwood Flooring is a floor that says welcome and adds a touch of elegance to any home. If you are looking to buy a new home and you haven't had the opportunity to see or feel hand scraped hardwoods, stop in any of the model homes at Innovation Builders in Keller, North Richland Hills or Grand Prairie, Texas and check it out!

Source: http://ezinearticles.com/?What-Are-Hand-Scraped-Hardwood-Floors-and-What-Are-the-Benefits?&id=6026646

Tuesday, 9 June 2015

Web Scraping Services : Making Modern File Formats More Accessible

Data scraping is the process of automatically sorting through information contained on the internet inside html, PDF or other documents and collecting relevant information to into databases and spreadsheets for later retrieval. On most websites, the text is easily and accessibly written in the source code but an increasing number of businesses are using Adobe PDF format (Portable Document Format: A format which can be viewed by the free Adobe Acrobat software on almost any operating system. See below for a link.). The advantage of PDF format is that the document looks exactly the same no matter which computer you view it from making it ideal for business forms, specification sheets, etc.; the disadvantage is that the text is converted into an image from which you often cannot easily copy and paste. PDF Scraping is the process of data scraping information contained in PDF files. To PDF scrape a PDF document, you must employ a more diverse set of tools.

There are two main types of PDF files: those built from a text file and those built from an image (likely scanned in). Adobe's own software is capable of PDF scraping from text-based PDF files but special tools are needed for PDF scraping text from image-based PDF files. The primary tool for PDF scraping is the OCR program. OCR, or Optical Character Recognition, programs scan a document for small pictures that they can separate into letters. These pictures are then compared to actual letters and if matches are found, the letters are copied into a file. OCR programs can perform PDF scraping of image-based PDF files quite accurately but they are not perfect.

Once the OCR program or Adobe program has finished PDF scraping a document, you can search through the data to find the parts you are most interested in. This information can then be stored into your favorite database or spreadsheet program. Some PDF scraping programs can sort the data into databases and/or spreadsheets automatically making your job that much easier.

Quite often you will not find a PDF scraping program that will obtain exactly the data you want without customization. Surprisingly a search on Google only turned up one business, that will create a customized PDF scraping utility for your project. A handful of off the shelf utilities claim to be customizable, but seem to require a bit of programming knowledge and time commitment to use effectively. Obtaining the data yourself with one of these tools may be possible but will likely prove quite tedious and time consuming. It may be advisable to contract a company that specializes in PDF scraping to do it for you quickly and professionally.

Let's explore some real world examples of the uses of PDF scraping technology. A group at Cornell University wanted to improve a database of technical documents in PDF format by taking the old PDF file where the links and references were just images of text and changing the links and references into working clickable links thus making the database easy to navigate and cross-reference. They employed a PDF scraping utility to deconstruct the PDF files and figure out where the links were. They then could create a simple script to re-create the PDF files with working links replacing the old text image.

A computer hardware vendor wanted to display specifications data for his hardware on his website. He hired a company to perform PDF scraping of the hardware documentation on the manufacturers' website and save the PDF scraped data into a database he could use to update his webpage automatically.

PDF Scraping is just collecting information that is available on the public internet. PDF Scraping does not violate copyright laws.

PDF Scraping is a great new technology that can significantly reduce your workload if it involves retrieving information from PDF files. Applications exist that can help you with smaller, easier PDF Scraping projects but companies exist that will create custom applications for larger or more intricate PDF Scraping jobs.

Source: http://ezinearticles.com/?PDF-Scraping:-Making-Modern-File-Formats-More-Accessible&id=193321

Tuesday, 2 June 2015

On-line directory tree webscraping

As you surf around the internet — particularly in the old days — you may have seen web-pages like this:

The former image is generated by Apache SVN server, and the latter is the plain directory view generated for UserDir on Apache.

In both cases you have a very primitive page that allows you to surf up and down the directory tree of the resource (either the SVN repository or a directory file system) and select links to resources that correspond to particular files.

Now, a file system can be thought of as a simple key-value store for these resources burdened by an awkward set of conventions for listing the keys where you keep being obstructed by the ‘/‘ character.

My objective is to provide a module that makes it easy to iterate through these directory trees and produce a flat table with the following helpful entries:

Although there is clearly redundant data between the fields url, abspath, fname, name, ext, having them in there makes it much easier to build a useful front end.

The function code (which I won’t copy in here) is at https://scraperwiki.com/scrapers/apache_directory_tree_extractor/. This contains the functions ParseSVNRevPage(url) and ParseSVNRevPageTree(url), both of which return dicts of the form:

{'url', 'rev', 'dirname', 'svnrepo',

 'contents':[{'url', 'abspath', 'fname', 'name', 'ext'}]}

I haven’t written the code for parsing the Apache Directory view yet, but for now we have something we can use.

I scraped the UK Cave Data Registry with this scraper which simply applies the ParseSVNRevPageTree() function to each of the links and glues the output into a flat array before saving it:

lrdata = ParseSVNRevPageTree(href)

ldata = [ ]

for cres in lrdata["contents"]:

    cres["svnrepo"], cres["rev"] = lrdata["svnrepo"], lrdata["rev"]

    ldata.append(cres)

scraperwiki.sqlite.save(["svnrepo", "rev", "abspath"], ldata)

Now that we have a large table of links, we can make the cave image file viewer based on the query:

select abspath, url, svnrepo from swdata where ext=’.jpg’ order by abspath limit 500

By clicking on a reference to a jpg resource on the left, you can preview what it looks like on the right.

If you want to know why the page is muddy, a video of the conditions in which the data was gathered is here.

Image files are usually the most immediately interesting out of any unknown file system dump. And they can be made more interesting by associating meta-data with them (given that no convention for including interesting information in the EXIF sections of their file formats). This meta-data might be floating around in other files dumped into the same repository — eg in the form of links to them from html pages which relate to picture captions.

But that is a future scraping project for another time.

Source: https://scraperwiki.wordpress.com/2012/09/14/on-line-directory-tree-webscraping/

Friday, 29 May 2015

Data Scraping Services - Scraping Yelp Business Data With Python Scraping Script

Yelp is a great source of business contact information with details like address, postal code, contact information; website addresses etc. that other site like Google Maps just does not. Yelp also provides reviews about the particular business. The yelp business database can be useful for telemarketing, email marketing and lead generation.

Are you looking for yelp business details database? Are you looking for scraping data from yelp website/business directory? Are you looking for yelp screen scraping software? Are you looking for scraping the business contact information from the online Yelp? Then you are at the right place.

Here I am going to discuss how to scrape yelp data for lead generation and email marketing. I have made a simple and straight forward yelp data scraping script in python that can scrape data from yelp website. You can use this yelp scraper script absolutely free.

I have used urllib, BeautifulSoup packages. Urllib package to make http request and parsed the HTML using BeautifulSoup, used Threads to make the scraping faster.

Yelp Scraping Python Script

import urllib from bs4 import BeautifulSoup import re from threading import Thread #List of yelp urls to scrape url=['http://www.yelp.com/biz/liman-fisch-restaurant-hamburg','http://www.yelp.com/biz/casa-franco-caramba-hamburg','http://www.yelp.com/biz/o-ren-ishii-hamburg','http://www.yelp.com/biz/gastwerk-hotel-hamburg-hamburg-2','http://www.yelp.com/biz/superbude-hamburg-2','http://www.yelp.com/biz/hotel-hafen-hamburg-hamburg','http://www.yelp.com/biz/hamburg-marriott-hotel-hamburg','http://www.yelp.com/biz/yoho-hamburg'] i=0 #function that will do actual scraping job def scrape(ur): html = urllib.urlopen(ur).read() soup = BeautifulSoup(html) title = soup.find('h1',itemprop="name") saddress = soup.find('span',itemprop="streetAddress") postalcode = soup.find('span',itemprop="postalCode") print title.text print saddress.text print postalcode.text print "-------------------" threadlist = [] #making threads while i<len(url): t = Thread(target=scrape,args=(url[i],)) t.start() threadlist.append(t) i=i+1 for b in
threadlist: b.join()

import urllib

from bs4 import BeautifulSoup

import re

from threading import Thread

 #List of yelp urls to scrape

url=['http://www.yelp.com/biz/liman-fisch-restaurant-hamburg','http://www.yelp.com/biz/casa-franco-caramba-hamburg','http://www.yelp.com/biz/o-ren-ishii-hamburg','http://www.yelp.com/biz/gastwerk-hotel-hamburg-hamburg-2','http://www.yelp.com/biz/superbude-hamburg-2','http://www.yelp.com/biz/hotel-hafen-hamburg-hamburg','http://www.yelp.com/biz/hamburg-marriott-hotel-hamburg','http://www.yelp.com/biz/yoho-hamburg']

 i=0

#function that will do actual scraping job

def scrape(ur):

           html = urllib.urlopen(ur).read()

          soup = BeautifulSoup(html)

       title = soup.find('h1',itemprop="name")

          saddress = soup.find('span',itemprop="streetAddress")

          postalcode = soup.find('span',itemprop="postalCode")

          print title.text

          print saddress.text

          print postalcode.text

          print "-------------------"

 threadlist = []

#making threads

while i<len(url):

          t = Thread(target=scrape,args=(url[i],))

          t.start()

          threadlist.append(t)

          i=i+1

for b in threadlist:

          b.join()

Recently I had worked for one German company and did yelp scraping project for them and delivered data as per their requirement. If you looking for scraping data from business directories like yelp then send me your requirement and I will get back to you with sample.

Source: http://webdata-scraping.com/scraping-yelp-business-data-python-scraping-script/

Tuesday, 26 May 2015

Web Scraping Services - Extracting Business Data You Need

Would you like to have someone collect, extract, find or scrap contact details, stats, list, extract data, or information from websites, online stores, directories, and more?

"Hi-Tech BPO Services offers 100% risk-free, quick, accurate and affordable web scraping, data scraping, screen scraping, data collection, data extraction, and website scraping services to worldwide organizations ranging from medium-sized business firms to Fortune 500 companies."

At Hi-Tech BPO Services we are helping global businesses build their own database, mailing list, generate leads, and get access to vast resources of unstructured data available on World Wide Web.

We scrape data from various sources such as websites, blogs, podcasts, and online directories; and convert them into structured formats such as excel, csv, access, text, My SQL using automated and manual scraping technologies. Through our web data scraping services, we crawl through websites and gather sales leads, competitor’s product details, new offers, pricing methodologies, and various other types of information from the web.

Our web scraping services scrape data such as name, email, phone number, address, country, state, city, product, and pricing details among others.

Areas of Expertise in Web Scraping:

•    Contact Details
•    Statistics data from websites
•    Classifieds
•    Real estate portals
•    Social networking sites
•    Government portals
•    Entertainment sites
•    Auction portals
•    Business directories
•    Job portals
•    Email ids and Profiles
•    URLs in an excel spreadsheet
•    Market place portals
•    Search engine and SEO
•    Accessories portals
•    News portals
•    Online shopping portals
•    Hotels and restaurant
•    Event portals
•    Lead generation

Industries we Serve:

Our web scraping services are suitable for industries including real estate, information technology, university, hospital, medicine, property, restaurant, hotels, banking, finance, insurance, media/entertainment, automobiles, marketing, human resources, manufacturing, healthcare, academics, travel, telecommunication and many more.

Why Hi-Tech BPO Services for Web Scraping?

•    Skilled and committed scraping experts
•    Accurate solutions
•    Highly cost-effective pricing strategies
•    Presence of satisfied clients worldwide
•    Using latest and effectual web scraping technologies
•    Ensures timely delivery
•    Round the clock customer support and technical assistance

Get Quick Cost and Time Estimate

Source: http://www.hitechbposervices.com/web-scraping.php

Monday, 25 May 2015

Which language is the most flexible for scraping websites?

3 down vote favorite

I'm new to programming. I know a little python and a little objective c, and I've been going through tutorials for each. Then it occurred to me, I need to know which language is more flexible (python, obj c, something else) for screen scraping a website for content.

What do I mean by "flexible"?

Well, ideally, I need something that will be easy to refactor and tweak for similar projects. I'm trying to avoid doing a lot of re-writing (well, re-coding) if I wanted to switch some of the variables in the program (i.e., the website to be scraped, the content to fetch, etc).

Anyways, if you could please give me your opinion, that would be great. Oh, and if you know any existing frameworks for the language you recommend, please share. (I know a little about Selenium and BeautifulSoup for python already).

4 Answers

I recently wrote a relatively complex web scraper to harvest a TON of data. It had to do some relatively complex parsing, I needed it to stuff it into a database, etc. I'm C# programmer now and formerly a Perl guy.

I wrote my original scraper using Python. I started on a Thursday and by Sunday morning I was harvesting over about a million scores from a show horse site. I used Python and SQLlite because they were fast.

HOWEVER, as I started putting together programs to regularly keep the data updated and to populate the SQL Server that would backend my MVC3 application, I kept hitting snags and gaps in my Python knowledge.

In the end, I completely rewrote the scraper/parser in C# using the HtmlAgilityPack and it works better than before (and just about as fast).

Because I KNEW THE LANGUAGE and the environment so much better I was able to add better database support, better logging, better error handling, etc. etc.

So... short answer.. Python was the fastest to market with a "good enough for now" solution, but the language I know best (C#) was the best long-term solution.

EDIT: I used BeautifulSoup for my original crawler written in Python.

5 down vote

The most flexible is the one that you're most familiar with.

Personally, I use Python for almost all of my utilities. For scraping, I find that its functionality specific to parsing and string manipulation requires little code, is fast and there are a ton of examples out there (strong community). Chances are that someone's already written whatever you're trying to do already, or there's at least something along the same lines that needs very little refactoring.

1 down vote

I think its safe to say that Python is a better place to start than Objective C. Honestly, just about any language meets the "flexible" requirement. All you need is well thought out configuration parameters. Also, a dynamic language like Python can go a long way in increasing flexibility, provided that you account for runtime type errors.

1 down vote

I recently wrote a very simple web-scraper; I chose Common Lisp as I'm learning the language.

On the basis of my experience - both of the language and the availability of help from experienced Lispers - I recommend investigating Common Lisp for your purpose.

There are excellent XML-parsing libraries available for CL, as well as libraries for parsing invalid HTML, which you'll need unless the sites you're parsing consist solely of valid XHTML.

Also, Common Lisp is a good language in which to implement DSLs; a DSL for web-scraping may be a solution to your requirement for flexibility & re-use.

Source: http://programmers.stackexchange.com/questions/74998/which-language-is-the-most-flexible-for-scraping-websites/75006#75006


Friday, 22 May 2015

Scraping Data: Site-specific Extractors vs. Generic Extractors

Scraping is becoming a rather mundane job with every other organization getting its feet wet with it for their own data gathering needs. There have been enough number of crawlers built – some open-sourced and others internal to organizations for in-house utilities. Although crawling might seem like a simple technique at the onset, doing this at a large-scale is the real deal. You need to have a distributed stack set up to take care of handling huge volumes of data, to provide data in a low-latency model and also to deal with fail-overs. This still is achievable after crossing the initial tech barrier and via continuous optimizations. (P.S. Not under-estimating this part because it still needs a team of Engineers monitoring the stats and scratching their heads at times).

Social Media Scraping

Focused crawls on a predefined list of sites

However, you bump into a completely new land if your goal is to generate clean and usable data sets from these crawls i.e. “extract” data in a format that your DB can process and aid in generating insights. There are 2 ways of tackling this:

a. site-specific extractors which give desired results

b. generic extractors that result in few surprises

Assuming you still do focused crawls on a predefined list of sites, let’s go over specific scenarios when you have to pick between the two-

1. Mass-scale crawls; high-level meta data – Use generic extractors when you have a large-scale crawling requirement on a continuous basis. Large-scale would mean having to crawl sites in the range of hundreds of thousands. Since the web is a jungle and no two sites share the same template, it would be impossible to write an extractor for each. However, you have to settle in with just the document-level information from such crawls like the URL, meta keywords, blog or news titles, author, date and article content which is still enough information to be happy with if your requirement is analyzing sentiment of the data.

cb1c0_one-size

A generic extractor case

Generic extractors don’t yield accurate results and often mess up the datasets deeming it unusable. Reason being

programatically distinguishing relevant data from irrelevant datasets is a challenge. For example, how would the extractor know to skip pages that have a list of blogs and only extract the ones with the complete article. Or delineating article content from the title on a blog page is not easy either.

To summarize, below is what to expect of a generic extractor.

Pros-

•    minimal manual intervention
•    low on effort and time
•    can work on any scale

Cons-

•    Data quality compromised
•    inaccurate and incomplete datasets
•    lesser details suited only for high-level analyses
•    Suited for gathering- blogs, forums, news
•    Uses- Sentiment Analysis, Brand Monitoring, Competitor Analysis, Social Media Monitoring.

2. Low/Mid scale crawls; detailed datasets – If precise extraction is the mandate, there’s no going away from site-specific extractors. But realistically this is do-able only if your scope of work is limited i.e. few hundred sites or less. Using site-specific extractors, you could extract as many number of fields from any nook or corner of the web pages. Most of the times, most pages on a website share similar templates. If not, they can still be accommodated for using site-specific extractors.

cutlery

Designing extractor for each website

Pros-

•    High data quality
•    Better data coverage on the site

Cons-

High on effort and time

Site structures keep changing from time to time and maintaining these requires a lot of monitoring and manual intervention

Only for limited scale

Suited for gathering – any data from any domain on any site be it product specifications and price details, reviews, blogs, forums, directories, ticket inventories, etc.

Uses- Data Analytics for E-commerce, Business Intelligence, Market Research, Sentiment Analysis

Conclusion

Quite obviously you need both such extractors handy to take care of various use cases. The only way generic extractors can work for detailed datasets is if everyone employs standard data formats on the web (Read our post on standard data formats here). However, given the internet penetration to the masses and the variety of things folks like to do on the web, this is being overly futuristic.

So while site-specific extractors are going to be around for quite some time, the challenge now is to tweak the generic ones to work better. At PromptCloud, we have added ML components to make them smarter and they have been working well for us so far.

What have your challenges been? Do drop in your comments.

Source: https://www.promptcloud.com/blog/scraping-data-site-specific-extractors-vs-generic-extractors/

Wednesday, 20 May 2015

The Features of the "Holographic Meridian Scraping Therapy"

1. Systematic nature: Brief introduction to the knowledge of viscera, meridians and points in traditional Chinese medicine, theory of holographic diagnosis and treatment; preliminary discussion of the treatment and health care mechanism of scraping therapy; systemat­ic introduction to the concrete methods of the holographic meridian scraping therapy; enumerating a host of therapeutic methods of scraping for disorders in both Chinese and Western medicine to em­body a combination of disease differentiation and syndrome differen­tiation; and summarizing the health care scraping methods. It is a practical handbook of gua sha.

2. Scientific: Applying the theories of Chinese and Western medicine to explain the health care and treatment mechanism and clinical applications of scraping therapy; introducing in detail the practical manipulations, items for attention, and indications and contraindications of the scraping therapy. Here are introduced repre­sentative diseases in different clinical departments, for which scrap­ing therapy has a better curative effect and the therapeutic methods of scraping for these diseases. Stress is placed on disease differentia­tion in Western medicine and syndrome differentiation in Chinese medicine, which should be combined in practical application.

Although there are more than 140,000 kinds of disease known to modem medicine, all diseases are related to dysfunction of the 14 meridians and internal organs, according to traditional Chinese med­icine. The object of scraping therapy is to correct the disharmony in the meridians and internal organs to recover the normal bodily func­tions. Thus, the scraping of a set of meridian points can be used to treat many diseases. In the section on clinical application only about 100 kinds of common diseases are discussed, although the actual number is much more than that. For easy reference the "Index of Diseases and Symptoms" is appended at the back of the book.

3. Practical: Using simple language and plenty of pictures and diagrams to guarantee that readers can easily leam, memorize and apply the principles of scraping therapy. As long as they master the methods explained in Chapter Three, readers without any medical knowledge can apply scraping therapy to themselves or others, with reference to the pictures in Chapters Four and Five. Besides scraping therapy, herbal treatment for each disease or syndrome is explained and may be used in combination with the scraping techniques.

Referring to the Holographic Meridian Hand Diagnosis and pic­tures at the back of the book will enhance accuracy of diagnosis and increase the effectiveness of scraping therapy.

Since the first publication and distribution of the Chinese edition of the book in July 1995, it has been welcomed by both medical specialists and lay people. In March 1996 this book was republished and adopted as a textbook by the School for Advanced Studies of Traditional Chinese Medicine affiliated to the Institute of the Acu­puncture and Moxibustion of the China Academy of Traditional Chi­nese Medicine.

In order to bring this health care method to more and more peo­ple and to make traditional Chinese medicine better appreciated They have modified and replenished this book in the spirit of constant im­provement. They hope that they may make a contribution to the health care of mankind with this natural therapy which has no side-effects and causes no pollution.

They hope that the Holographic Meridian Scraping Therapy can help the health and happiness of more and more families in the world.

Source: http://ezinearticles.com/?The-Features-of-the-Holographic-Meridian-Scraping-Therapy&id=5005031

Sunday, 17 May 2015

Dapper: The Scraper for the Common Man

Sometimes, especially with Web 2.0 companies, jargon can get a little bit out of hand. When someone says that a service allows you to "build an API for any website", it can be a bit difficult to understand what that really means.

However, put simply, Dapper is a scraper. Nothing more. It allows you to scrape content from a Web page and convert it into an XML document that can be easily used at another location. Though you won't find the words "scrape" or "scraper" anywhere on its site, that is exactly what it does.

What separates Dapper from other scrapers, both legitimate and illegitimate, is that it is both free and easy to use. In short, it makes the process of setting up the scraper simple enough for your every day Internet user. While one has never needed to be a geek to scrape RSS feeds, now the technologically impaired can scrape content from any site, even those that don't publish RSS feeds.

Though the TechCrunch profile of the service says that Dapper "aims to offer some legitimate, valuable services and set up a means to respect copyright" others are expressing concern about the potential for copyright violations, especially by spam bloggers.

Either way though, both the cause for concern and the potential dangers are very, very real.

What is Dapper

When a user goes to create a new "Dapp", he or she first needs to provide a series of links. These links must be on the same domain and in similar formats (IE: Google searches for different terms or different blog posts on a single site) for the service to work. Once the links have been defined, the user is then taken to a GUI where they pick out fields.

In a simple example where the user would create their own RSS feed for a blog, the post title might be one field, perhaps called "post title" and the body would be a second, perhaps called "post body". Dapper, much like the service social bookmarking Clipmarks, is able able to intelligently select blocks of text on a Web page, making it easy to ensure that the entire post body is selected and that extraneous information is omitted.

Once the fields have been selected, the user can then either create groups based upon those fields or simply save the dapp for future use. Once the Dapp has been saved, they can then use it to create both raw XML data, an RSS feed, a Google Gadget or any number of other output files that can be easily used in other services.

If you are interested in viewing a demo of Dapper, you can do so at this link.

There is little doubt that Dapper is an impressive service. It has taken the black art of scraping and made it into a simple, easy-to-use application that just about anyone can pick up. Though it might take a few tries to create a working Dapp, and certainly spending some time reading up on the service is required, most will find it easy to use, especially when compared to the alternatives.

However, it's this ease of use that has so many worried. Though scrapers have been around for many years, they have been either difficult to use or expensive. Dapper's power, when combined with its price tag and sheer ease of use, has many wondered that it might be ushering not a new age for the Web, but a new age for scrapers seeking to abuse other's hard work.

Cause for Concern

While being easy to use or free is not necessarily a problem in and of itself, in the rush to enable users to make an API for any site, they forget that many sites don't have one or restrict access to their APIs for very good reasons. RSS scraping is perhaps the biggest copyright issue bloggers face. It enables a plagiarist or spammer to not only steal all of the content on the blog right then, but also all of the content that will be posted in the future. This is a huge concern for many bloggers, especially those concerned about performing well in the search engines.

This has prompted many blogs to either disable their RSS feeds, truncate them or move them to a feed monitoring service such as Feedburner. However, if users can simply create their own RSS feeds with ease, these protections are circumvented and Webmasters lose control over their content.

Even with potential copyright abuse issues aside, Dapper creates potential problems for Webmasters. It bypasses the usual metrics that site owners have. A user who reads a site, or large portions of it, through a Dapp will not be counted in either the feed statistics or, depending on how Dapper is set up, even in the site's logs. All the while, the site is spending precious resources to feed the Dapp, taking money out of the Webmaster's pocket.

This combination of greater expense, less traffic and less accurate metrics can be dangerous to Webmasters who are working to get accurate traffic counts, visitor feedback or revenue.

Worse still, Dapp users also bypass any ads or other monetization tools that might be included in the site or the original RSS feed. This has a direct impact on sites trying to either turn a profit or, like this one, recoup some of the costs of hosting.

Despite this, it's the copyright concerns that reign supreme. Though screen scraping is not necessarily an evil technology, it is the sinister uses that have gotten the most attention and, sadly, seem to be the most common, especially in regards to blogs.

Even if the makers of Dapper is aiming to add copyright protection at a later date, the service is fully functional today and, though the FAQ states that they will "comply with any verified request by the lawful owner of the content to cease using his content," there is no opt-out procedure, no DMCA information on the United States Copyright Office Web site, no information on how to prevent Dapper from accessing your site and nothing but a contact page to get in touch with the makers of the service.

(Note: An email sent to the makers of Dapper on the 22nd has, as of yet, gone unanswered)

In addition to creating a potential copyright nightmare for Webmasters the site seems to be setting itself up for a lawsuit. In addition to not being DMCA Safe Harbor compliant (PDF), thus opening it up to copyright infringement lawsuits directly, the service seems to be vulnerable to a lawsuit under the MGM v. Grokster case, which found that service providers can be sued for infringement conducted by its users if they fail an "inducement" test. Sadly for Dapper, simply saying that it is the user's responsibility is not adequate to pass such a test, as Grokster found out. The failure to offer filtering technology and encouragement to create API's for "any" site are both likely strikes against Dapper in that regard.

To make matters more grim, copyright is not the only issue scrapers have to worry about, as one pair of lawyers put it, there are at least four different different legal theories that make scraping illegal including the computer fraud and abuse act, trespass against chattels and breach of contract. All in all, copyright is practically the least of Dapper's problems.

When it's all said and done, there is a lot of room for concern, not just on the part of Webmasters that might be affected by Dapper or its users, but also its makers. These intellectual property and other legal issues could easily sink the entire project.

Conclusions

It is obvious that a lot of time and effort went into creating Dapper. It's a very powerful, easy to use service that opens up interesting possibilities. I would hate to see the service used for ill and I would hate even worse to see all of the hard work that went into it lost because of intellectual property issues.

However, in its current incarnation, it seems likely that Dapper is going to encounter significant resistance on the IP front. There is little, if any protection or regard for intellectual property under the current system and, once bloggers find out that their content is being syndicated without their permission by the service, many are likely to start raising a fuss.

Even though Dapper has gotten rave reviews in the Web 2.0 community, it seems likely that traditional bloggers and other Web site owners will have serious objections to it. Those people, sadly, most likely have never heard of Dapper at this point.

With that being said, it is a service everyone needs to make note of. The one thing that is for certain is that it will be in the news again. The only question is what light will it be under.

Source: https://www.plagiarismtoday.com/2006/08/24/dapper-the-scraper-for-the-common-man/

Thursday, 7 May 2015

Web Scraping Services Are Important Tools For Knowledge

Data extraction and web scraping techniques are important tools to find relevant data and information for personal or business use. Many companies, self-employed to copy and paste data from web pages. This process is very reliable, but very expensive as it is a waste of time and effort to get results. This is because the data collected and spent less resources and time required to collect these data are compared.

At present, several mining companies and their websites effective web scraping technique specifically for the thousands of pages of information developed culture can be traced. The information from a CSV file, database, XML file, or any other source with the required format is alameda. understanding of correlations and patterns in the data, so that policies can be designed to assist decision making. The information can also be stored for future reference.

The following are some common examples of data extraction process:

In order to rule through a government portal, citizens who are reliable for a given survey name removed.

Competitive pricing and data products include scraping websites

To access the web site or web design Stock download the videos and photos of scratching

Automatic Data Collection

It regularly collects data on a regular basis. Automated data collection techniques are very important because they find the company’s customer trends and market trends to help. By determining market trends, it is possible to understand customer behavior and predict the likelihood of the data will change.

The following are some examples of automated data collection:

Monitoring of special hourly rates for stocks

collects daily mortgage rates from various financial institutions

on a regular basis is necessary to check the weather

By using web scraping services, you can extract all data related to your business. Then analyzed the data to a spreadsheet or database can be downloaded and compared. Storing data in a database or in a required format and interpretation of the correlations to understand and makes it easier to identify hidden patterns.

Data extraction services, it is possible pricing, email, databases, profile data, and consistently to competitors for information about the data. Different techniques and processes designed to collect and analyze data, and has developed over time. Web Scraping for business processes that have beaten the market recently is one. It is a process from various sources such as websites and databases with large amounts of data provides.

Some of the most common methods used to scrape web crawling, text, fun, DOM analysis and include matching expression. After the process is only analyzers, HTML pages or meaning can be achieved through annotations. There are many different ways of scaling data, but more importantly is working toward the same goal. The main purpose of using web scraping service to retrieve and compile data in databases and web sites. In the business world is to remain relevant to the business process.

The central question about the relevance of web scraping contact. The process is relevant to the business world? The answer is yes. The fact that it is used by large companies in the world and many awards speaks derivatives.

Source: http://www.selfgrowth.com/articles/web-scraping-services-are-important-tools-for-knowledge

Thursday, 30 April 2015

Customized Web Data Extraction Solutions for Business

As you begin leading your business on the path to success, competitive analysis forms a major part of your homework. You have already mobilized your efforts in finding the appropriate website data scrapping tool that will help you to collect relevant data from competitive websites and shape them up into useable information. There is however a need to look for a customized approach in your search for Data Extraction tools in order to leverage its benefits in the best possible way.

Off-the-shelf Tools Impede Data Extraction

 In the current scenario, Internet Technologies are evolving in abundance. Every organization leverages this development and builds their websites using a different programming language and technology. Off-the-shelf Website Data extraction tools are unable to interpret this difference. They fail to understand the data elements that need to be captured and end up in gathering data without any change in the software source codes.

As a result of this incapability in their technology, off-the-shelf solutions often deliver unclean, incomplete and also inaccurate data. Developers need to contribute a humungous effort in cleaning up and structuring the data to make it useable. However, despite the time-consuming activity, data seldom metamorphoses into the desired information. Also the personnel dealing with the clean-up process needs to have sufficient technical expertise in order to participate in the activities. The endeavor however results in an impediment to the whole process of data extraction leaving you thirsting for the required information to augment business growth.

Understanding how Web Extraction tools work

Web Scrapping tools are designed to extract data from the web automatically. They are usually small pieces of code written using programming languages such as Python, Ruby or PHP depending upon the expertise of the community building it. There are however several single-click models available which tends to make life easier for non-technical personnel.

The biggest challenge faced by a successful web extractor tool is to know how to tackle the right page and the right elements on that page in order to extract the desired information. Consequently, a web extractor needs to be designed to understand the anatomy of a web page in order to accomplish its task successfully. It should be designed to interpret the meaning of HTML elements like , table rows () within those tables, and table data (<td>) cells within those rows in order to extract the exact data. It will also be interfacing with the

element which are blocks of text and know how to extract the desired information from it.

Customized Solutions for your business

 Customized Solutions are provided by most Data Scraping experts. These software's help to minimize the cumbersome effort of writing elaborate codes to successfully accomplish the feat of data extraction. They are designed to seamlessly search competitive websites,identify relevant data elements, and extract appropriate data that will be useful for your business. Owing to their focused approach, these tools provide clean and accurate data thereby eliminating the need to waste valuable time and effort in any clean-up effort.

Most customized data extraction tools are also capable of delivering the extracted data in customized formats like XML or CSV. It also stores data in local databases like Microsoft Access, MySQL, or Microsoft SQL.

Customized Data scraping solutions therefore help you take accurate and informed decisions in order to define effective business strategies.

Source: http://scraping-solutions.blogspot.in/2014_07_01_archive.html 

Tuesday, 28 April 2015

Web Scraping – Effective Way of Improving Market Presence

Web scraping is a technique that is fast making its presence felt in the world of internet by its sheer weight of being effective. It is a technique that uses software to crawl through the internet and gather up all the relevant and important information that one would need for their products.

The information gathered by the web scraping can be used for various things such as data integration, web mashup, online comparison of price and much more. Web scraping uses sophisticated software that crawls through the internet and gathers up all related information for the entity that you are looking for. The information that is gathered up is an automated, systematic, and very structured way. This allows for easy understanding of the gathered information. Though this is one of the best ways for data extraction there are quite a few things that one must be aware of before getting into web scraping.

Being aware of the following things keep you at a better position not only leverage the best deal, but also to negotiate properly.

•    For data mining the first thing that one should be very sure of is the kind of data they want. One has to define properly what kind of data they want and also what would be the purpose of the same. For an instance if you wish to get a closer look at your competitors, it would be a wise to let the data scraping service providers know who your competitors are. This would allow them to gather better information. Similarly if you are looking for getting new customers getting contact data from existing players in the respective industry would be helpful.

•    One should also be aware of the structure in which they want the data. A simple data structure has the entity name in the row and the property of the entity is kept in the cells of the rows. However, one can also opt for data structure in chart. Apart from the above, there is just one more thing that one needs to keep in mind while using the data mining services; it is the number of data extraction. At times a onetime data extraction would be sufficient whereas at other times periodic extractions or general reports are required.

If you are aware of all the above points, then you are very much inline of going ahead and taking the help of scrape website data. Knowing the above points would allow you to know what exactly to ask from your vendor and likewise quote. One can make the most of the data extraction services with the help of either the web scraping or web crawling services.

Source: https://3idatascraping.wordpress.com/2014/01/07/web-scraping-effective-way-of-improving-market-presence/

Sunday, 26 April 2015

Scraping the Bottom of the Barrel - The Perils of Online Article Marketing

Many online article marketers so desperately wish to succeed, they want to dump corporate life and work for themselves out of their home. They decide they are going to create an online money making website. Therefore, they look around to see what everyone else is doing, and watch the methods others use to attract online buyers, and then they mimic their marketing, their strategies, and their business models.

Still, if you are copying what other people (less ethical people) are doing in online article marketing, those which are scraping the bottom of the barrel and using false advertising and misrepresentations, then all you are really doing is perpetuating distrust on the Internet. Therefore, you are hurting everyone, including people like me. You must realize that people like me don't appreciate that.

Let me give you a few examples of some of the things going on out there, thing that are being done by people who are ethically challenged. Far too many people write articles and then on their byline they send the Internet surfer or reader of the article to a website that has a squeeze page. The squeeze page has no real information on it, rather it asks for their name and e-mail address.

If the would-be Internet surfer is unwise enough to type in their name and email address they will be spammed by e-mail, receiving various hard-sell marketing pieces. Then, if the Internet Surfer does decide to put in their e-mail address, the website grants them access and then takes them to the page with information about what they are selling, or their online marketing "make you a millionaire" scheme.

Generally, these are five page sales letters, with tons of testimonials of people you've never heard of, and may not actually exist, and all sorts of unsubstantiated earnings claims of how much money you will make if you give them $39.35 by way of PayPal, for this limited offer "Now!" And they will send you an E-book with a strategic plan of how you can duplicate what they are doing. The reality is whatever they are doing is questionable to begin with.

If you are going to do online article marketing please don't scrape the bottom of the barrel, there's just too much competition down there from what I can see. Please consider all this.

Source: http://ezinearticles.com/?Scraping-the-Bottom-of-the-Barrel---The-Perils-of-Online-Article-Marketing&id=2710103

Wednesday, 22 April 2015

How to Properly Scrape Windows During The Cleaning Process

Removing ordinary dirt such as dust, fingerprints, and oil from windows seem simple enough. However, sometimes, you may find stubborn caked-on dirt or debris on your windows that cannot be removed by standard window cleaning techniques such as scrubbing or using a squeegee. The best way to remove caked-on dirt on your windows is to scrape it off. Nonetheless, you have to be extra careful when you are scraping your windows, because they can be easily scratched and damaged. Here are a number of rules that you need to follow when you are scraping windows.

Rule No. 1: It is recommended that you use a professional window scraper to remove caked-on dirt and debris from your windows. This type of scraper is specially made for use on glass, and it comes with certain features that can prevent scratching and other kinds of damage.

Rule No. 2: It is important to inspect your window scraper before using it. Take a look at the blade of the scraper and make sure that it is not rusted. Also, it must not be bent or chipped off at the corners. If you are not certain whether the blade is in a good enough condition, you should just play it safe by using a new blade.

Rule No. 3: When you are working with a window scraper, always use forward plow-like scraping motions. Scrape forward and lift the scraper off the glass, and then scrape forward again. Try not to slide the scraper backwards, because you may trap debris under the blade when you do so. Consequently, the scraper may scratch the glass.

Rule No. 4: Be extra cautious when you are using a window scraper on tempered glass. Tempered glass may have raised imperfections, which make it more vulnerable to scratches. To find out if the window that you are scraping is made of tempered glass, you have to look for a label in one of its corners.

Window Scraping Procedures

Before you start scraping, you have to wet your window with soapy water first. Then, find out how the window scraper works by testing it in a corner. Scrape on the same spot three or four times in forward motion. If you find that the scraper is moving smoothly and not scratching the glass, you can continue to work on the rest of the window. On the other hand, if you feel as if the scraper is sliding on sandpaper, you have to stop scraping. This indicates that the glass may be flawed and have raised imperfections, and scraping will result in scratches.

After you have ascertained that it is safe to scrape your window, start working along the edges. It is best that you start scraping from the middle of an edge, moving towards the corners. Work in a one or two inch pattern, until all the edges of the glass are properly scraped. After that, scrape the rest of the window in a straight pattern of four or five inches, working from top to bottom. If you find that the window is beginning to dry while you are working, wet it with soapy water again.

Source: http://ezinearticles.com/?How-to-Properly-Scrape-Windows-During-The-Cleaning-Process&id=6592930

Saturday, 18 April 2015

Some Traps to know and avoid in Web Scraping

In the present day and age, web scraping comes across as a handy tool in the right hands. In essence, web scraping means quickly crawling the web for specific information, using pre-written programs. Scraping efforts are designed to crawl and analyze the data of entire websites, and saving the parts that are needed. Many industries have successfully used web scraping to create massive banks of relevant, actionable data that they use on a daily basis to further their business interests and provide better service to customers. This is the age of the Big Data, and web scraping is one of the ways in which businesses can tap into this huge data repository and come up with relevant information that aids them in every way.

Web scraping, however, does come with its own share of problems and roadblocks. With every passing day, a growing number of websites are trying to actively minimize the instance of scraping and protect their own data to stay afloat in today’s situation of immense competition. There are several other complications which might arise and several traps that can slow you down during your web scraping pursuits. Knowing about these traps and how to avoid them can be of great help if you want to successfully accomplish your web scraping goals and get the amount of data that you require.

Complications in Web Scraping

Over time, various complications have risen in the field of web scraping. Many websites have started to get paranoid about data duplication and data security problems and have begun to protect their data in many ways. Some websites are not generally agreeable to the moral and ethical implications of web scraping, and do not want their content to be scraped. There are many places where website owners can set traps and roadblocks to slow down or stop web scraping activities. Major search engines also have a system in place to discourage scraping of search engine results. Last but not the least, many websites and web services announce a blanket ban on web scraping and say the same in their terms and conditions, potentially leading to legal issues in the event of any scraping.

Here are some of the most common complications that you might face during your web scraping efforts which you should be particularly aware about –

•    Some locations on the intranet might discourage web scraping to prevent data duplication or data theft.

•    Many websites have in place a number of different traps to detect and ban web scraping tools and programs.

•    Certain websites make it clear in their terms and conditions that they consider web scraping an infringement of their privacy and might even consider legal redress.

•    In a number of locations, simple measures are implemented to prevent non-human traffic to websites, making it difficult for web scraping tools to go on collecting data at a fast pace.

To surmount these difficulties, you need a deeper and more insightful understanding of the way web scraping works and also the attitude of website owners towards web scraping efforts. Most major issues can be subverted or quietly avoided if you maintain good working practice during your web scraping efforts and understand the mentality of the people whose sites you are scraping.

Common Problems

With automated scraping, you might face a number of common problems. The behavior of web scraping programs or spiders presents a certain picture to the target website. It then uses this behavior to distinguish between human users and web scraping spiders. Depending on that information, a website may or may not employ particular web scraping traps to stop your efforts. Some of the commonly employed traps are –

Crawling Pattern Checks – Some websites detect scraping activities by analyzing crawling patterns. Web scraping robots follow a distinct crawling pattern which incorporates repetitive tasks like visiting links and copying content. By carefully analyzing these patterns, websites can determine that they are being caused by a web scraping robot and not a human user, and can take preventive measures.

Honeypots – Some websites have honeypots in their webpages to detect and block web scraping activities. These can be in the form of links that are not visible to human users, being disguised in a certain way. Since your web crawler program does not operate the way a human user does, it can try and scrape information from that link. As a result, the website can detect the scraping effort and block the source IP addresses.

Policies – Some websites make it absolutely apparent in their terms and conditions that they are particularly averse to web scraping activities on their content. This can act as a deterrent and make you vulnerable against possible ethical and legal implications.

Infinite Loops – Your web scraping program can be tricked into visiting the same URL again and again by using certain URL building techniques.

These traps in web scraping can prove to be detrimental to your efforts and you need to find innovative and effective ways to surpass these problems. Learning some web crawler tips to avoid traps and judiciously using them is a great way of making sure that your web scraping requirements are met without any hassle.

What you can do

The first and foremost rule of thumb about web scraping is that you have to make your efforts as inconspicuous as possible. This way you will not arouse suspicion and negative behavior from your target websites. To this end, you need a well-designed web scraping program with a human touch. Such a program can operate in flexible ways so as to not alert website owners through the usual traffic criteria used to spot scraping tools.

Some of the measures that you can implement to ensure that you steer clear of common web scraping traps are –

•    The first thing that you need to do is to ascertain if a particular website that you are trying to scrape has any particular dislike towards web scraping tools. If you see any indication in their terms and conditions, tread cautiously and stop scraping their website if you receive any notification regarding their lack of approval. Being polite and honest can help you get away with a lot.

•    Try and minimize the load on every single website that you visit for scraping. Putting a high load on websites can alert them towards your intentions and often might cause them to develop a negative attitude. To decrease the overall load on a particular website, there are many techniques that you can employ.

•    Start by caching the pages that you have already crawled to ensure that you do not have to load them again.

•    Also store the URLs of crawled pages.

•    Take things slow and do not flood the website with multiple parallel requests that put a strain on their resources.

•    Handle your scraping in gentle phases and take only the content you require.

•    Your scraping spider should be able to diversify its actions, change its crawling pattern and present a polymorphic front to websites, so as not to cause an alarm and put them on the defensive.

•    Arrive at an optimum crawling speed, so as to not tax the resources and bandwidth of the target website. Use auto throttling mechanisms to optimize web traffic and put random breaks in between page requests, with the lowest possible number of concurrent requests that you can work with.

•    Use multiple IP addresses for your scraping efforts, or take advantage of proxy servers and VPN services. This will help to minimize the danger of getting trapped and blacklisted by a website.

•    Be prepared to understand the respect the express wishes and policies of a website regarding web scraping by taking a good look at the target ‘robots.txt’ file. This file contains clear instructions on the exact pages that you are allowed to crawl, and the requisite intervals between page requests. It might also specify that you use a pre-determined user agent identification string that classifies you as a scraping bot. adhering to these instructions minimizes the chance of getting on the bad side of website owners and risking bans.

Use an advanced tool for web scraping which can store and check data, URLs and patterns. Whether your web scraping needs are confined to one domain or spread over many, you need to appreciate that many website owners do not take kindly to scraping. The trick here is to ensure that you maintain industry best practices while extracting data from websites. This prevents any incident of misunderstanding, and allows you a clear pathway to most of the data sources that you want to leverage for your requirements.

Hope this article helps in understanding the different traps and roadblocks that you might face during your web scraping endeavors. This will help you in figuring out smart, sensible ways to work around them and make sure that your experience remains smooth. This way, you can keep receiving the important information that you need with web scraping. Following these basic guidelines can help you prevent getting banned or blacklisted and stay in the good books of website owners. This will allow you continue with your web scraping activities unencumbered.

Source: https://www.promptcloud.com/blog/some-traps-to-avoid-in-web-scraping/

Monday, 30 March 2015

Why Data mining is still a powerful tool to help companies

The ability of Data mining technologies to sift through volumes of data and arrive at predictive information to empower businesses can in no way be undermined. The advent of new techniques and technologies has made the practice more affordable by organizations both big and small. The new technologies have not only helped in reducing the overhead costs of running the data mining exercise, but also simplified the practice making it more accessible for smaller and mid-size companies employ it in their organizational processes. In the current era, information is power and Web Data Mining Technologies are stretching the limits of their capabilities to help organizations acquire that power.

Data Mining Ensures Better Business Decisions

 Organizations usually have access to large databases which store millions of historical data record. Traditional practices of hands-on analysis of patterns and trends of all available data proved to be too cumbersome to be pursued and were soon replaced with shorter and more selective data sets. This caused hidden patterns to remain hidden thus blocking off possibilities for organizations to grow and evolve. However, the advent of Data Mining as a technology that automates the identification of complex patterns in those databases changed all that. Organizations, now, are engaging in a thorough analysis of massive data sets and are moving ahead to extracting meanings and patterns from them. The analysis helps to unlock the hidden patterns and enables organizations to predict future market behavior and be geared with proactive and knowledge driven decisions for the benefit of their business.

Data Mining provides Fraud Detection Capabilities

 Loss in Revenue has definite adverse impacts on a company’s morale. It slackens productivity and slows down their growth. Fraud is one of the common malpractices that eat into the organization’s revenue earning capability. Data Mining helps to prevent this and ensures a steady rise in their revenue graph. Data mining models can be built to predict consumer behavior patterns which help in effectively detecting fraud.

Data Mining Evolves to be Business Focused

 Traditional Data Mining technologies were focused more on algorithms and statistics on delivering results which, though good failed to address the business issues appropriately. The new age data mining technologies, however, have evolved to become business focused. They understand the needs that drive the business and utilize the strong statistical algorithms built into their system to explore, collect, analyze and summarize data that can be made to work for better health of the business.

Data Mining has become more Granular


 As technology evolves, organizations leverage the benefits it generates. Integration of fundamental data mining functionalists into database engines is one such innovation that has helped organizations to thoroughly benefit from its effect. Mining data from within the database instead of Web Data Extraction the data and then analyzing it saves valuable time for the organization. Moreover, as organizations can now drill down into more granular levels of the data therefore there is a higher possibility of ensuring accuracy. Moreover, as data mining software now have a more direct access to the data sets within the database, there is a higher possibility of ensuring a smoother workflow and hence a better performance.

Conclusion

 Data mining, though capable of helping organizations generate good things, however, needs to be used intelligently. It has to be strongly aligned with the organization’s goals and principles in order to ensure appropriate performance that would strengthen the organization adequately.

We are leading Webdatascraping.us company and enough capable to extract website information, review scraping, contact information scraping, business directory scraping, email list scraping etc.

Wednesday, 18 March 2015

Safeguarding the Future Through Data Mining

Web scraping can be a powerful tool not only in business and research. In fact, it has the capacity to protect the future by its predicting power. You may find this declaration incredible; but data mining is indeed a tangible way of predicting future events and thus protecting life in the future.

With the thousands of years of existence on earth, humans are able to gather as much information and experience to have a glimpse of what is to come. With the cycles of changes in the environment and in the whole universe aside from the human behavior, so much can be learned and applied.

At least three major things can be determined by careful and diligent data mining. These are: future threats; future trends; and future tactics.

Future threats

According to reports, the US intelligence agencies have been using web extraction as a way of studying the present and past terrorism acts and personages to predict future terrorist events. This has been actively done since the year 2010.

Data is gathered about a known terrorist such as: his activities; his contacts; his routines; the places he frequents; and other related information. These data are analyzed and classified. Any suspicious activities as well as unusual contact are monitored closely. Through these stored data and monitoring processes, any untoward activities can be precluded and preempted. You may say that terrorists can be using data mining too; and that is obviously possible. In this way, web scraping can also be used as a weapon for destruction. There is then a need for the government agencies to be very careful in protecting their data so that the enemies cannot retrieve them.

In the overall picture, you can just imagine how many lives, trauma, and damage can be prevented if future terrorist activities are prevented.

Moreover, climate change is another phenomenon that has already been predicted and is beginning to occur nowadays. Scientists have been studying the effects of global warming and environmental degradation through online data too. So much information drives and warning have been published by scholarly papers and by the experts but many of these have remained unheeded. Now that erratic weather conditions are happening, people can only regret and feel guilty that they are part of the cause of the problem.

However, it is not really too late to do some actions. People can avoid places where abnormal conditions are expected to happen; they can do some measures to protect themselves; and they can be informed ahead of time before anything catastrophic could happen.

Future trends

In relation to the predictions of possible threats, data extraction can also predict future trends. This is most helpful in businesses because they can be helped to produce items and employ strategies that will suit the expected patrons and clients.  Since history tends to repeat itself, data gathered in the past and present if studied judiciously and compared intelligently can bring in positive results.

Oftentimes, the companies that study their books as well as of those who have gone before them can gain more knowledge and expertise that will surely put them ahead of their contemporaries.

Future tactics


Naturally, along with knowing the possible events and trends in the future, strategies and ways to combat threats and cope with trends can also be predicted through web scraping.

Safeguarding the future is no longer a dream or wish. As early as today, experts can create equipment, structures, strategies, and even weapons to prevent any untoward incidents and collateral damage.

Studying the strengths and weaknesses of the past and present plans, procedures, and tools can lead to better technologies and techniques. The future can be a better and safer place if people can learn from the mistakes of the past and go from good to better.

The statement: “The best is yet to come,” will finally be realized if proper management of data and information collected and analyzed through web scraping will be conducted.

Bright future

Looking at the horizon, one can always expect the sun to shine and bring in a bright day. This same positive expectation for the future is indeed possible. Thanks to data mining; life can be handled more securely and precisely.

It does not mean that humans have become gods. It only proves that a person’s talents and skills, when used properly can make his/her future brighter and more successful. On the other hand, carelessness and lack of sensibilities to other people and the environment can surely bring in future doom.

Everything is laid bare and you are given the chance to handle the present with enough wisdom and capabilities. Although the world is too big to be understood and there is still a huge field of knowledge to be conquered, life can surely go on positively.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/257-safeguarding-the-future-through-data-mining/

Monday, 16 March 2015

6 Benefits Associated with Data Mining

Data has been used from time immemorial by various companies to manage their operations.Data is needed by various organizations strategically aimed at expanding their business operations, reduction of costs, improve their marketing force and above all improve profitability. Data mining is aimed at the creation of information assets and uses them to leverage their objectives.

In this article, we discuss some of the common questions asked about the data mining technology. Some of the questions we have addressed include:

•    How can we define data mining?
•    How can data mining affect my organization?
•    How can my business get started with data mining?

Data Mining Defined


Data mining can be regarded as a new concept in the enterprise decision support system, usually abbreviated as DSS. It does more than complementing and interlocking with the DSS capabilities that may involve reporting and query. It can also be used in on-line analytical processing (OLAP), traditional statistical analysis and data visualization. The technology comes up with tables, graphs and reports of the past business history.

We may define data mining as modeling of hidden patterns and discovering data from large volumes of data.It is important to note that data mining is very different from other retrospective technologies because it involves the creation of models. By using this technology, the user can discover patterns and use them to build models without even understanding what you are after. It gives explanation why the past events happened and even predicting what is likely to happen.

Some of the information technologies that can be linked to data mining include neural networks, fuzzy logic, rule induction and genetic algorithms. In this article we do not cover those technologies but focus on how data mining can be used to meet your business needs and you can translate the solutions thereafter into dollars.

Setting Your Business Solutions and Profits

One of the common questions asked about this technology is; what role can data mining play for my organization? At the start of this article we described some of the opportunities that can be associated with the use of data. Some of those benefits include cost reduction, business expansion, sales and marketing and profitability. In the following paragraphs we look into some of the situations where companies have used data mining to their advantage.

Business Expansion

Equity Financial Limited wanted to expand their customer base and also attract new customers. They used the Loan Check offer to meet their objectives. Initiating the loan, a customer had to go to any branch of Equity branch and just cash the loan. Equity introduced a $6000 LoanCheck by just mailing the promotion to their existing customers. The equity database was able to track about 400 characteristics of every customer. The characteristics were about loan history of the customer, their active credit cards, current balance on the credit cards and if they could respond to the loan offer. Equity used data mining to shift through 400 customer features and also finding the significant ones. They used the data and build model based on the response to the Loan Check offer. They then integrated this model to 500,000 potential customers from credit bureau. They then selectively mailed the most potential customers that were determined by the data mining model.At the end of the process they were able to generate a tot
al of $2.1M in extra net income from 15,000 new customers.

Reduction of Operating Costs

Empire is one of the largest insurance companies in the country. In order to compete with other insurance companies, it has to offer quality services and at the same time reducing costs.Therefore it has to attack costs that may in form of fraud and abuse. This demands a considerable investigation skills and use of data management technology. The latter calls for data mining application that can profile every physician in their network based on claims records of every patient in their data warehouse. The application is able to detect subtle deviations on the physician behavior that are linked to her/her peer group. The deviations are then reported to the intelligence and fraud investigators as “suspicion index.” With this effort derived from data mining, the company was able to save $31M, $37M, and $41M in the first three years respectively from frauds.

Sales Effectiveness and Profitability

In this case we look into pharmaceutical sector. Their sales representatives have wide range of assortment tools they use in promoting various products to physicians. Some of the tools include product samples, clinical literature, dinner meetings, golf outings, teleconferences and many more. Therefore getting to know the promotions methods that are ideal for particular physician is of valuable importance and it is likely to cost the company a lot of dollars in sales call and thereby more lost revenue.

Through data mining, a drug maker was able to link eight months of promotional activity based on corresponding sales found in their database. They then used this information to build a predictive model for each physician.The model revealed that for the six promotional alternatives, only three had a significant impact. Then they used the knowledge found in the data mining models and thereby customizing the ROI.

Looking at those two case studies, then ask yourself, was data mining necessary?

Getting Started


All the cases presented above have revealed how data mining was used to yield results to the various businesses. Some of the results led to increased revenue and increased customer base. Others can be regarded as bottom-line improvements that impacted on cost savings and also improved productivity.In the next few paragraphs we try to answer the question; how can my company get started and start realizing the benefits of data mining.

The right time to start your data mining project is now. With the emergence of specialized data mining companies, starting the process has been simplified and the costs greatly reduced. Data mining project can offer important insights into the field and also aggregate the idea of creating a data warehouse.

In this article we have addressed some of the common questions regarding data mining, what are the benefits associated with the process and how a company can get started. Now, with this knowledge your company should start with a pilot project and then continue building a data mining capability in your company; to improve profitability, market your products more effectively, expand your business and also reduce costs.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/255-benefits-associated-with-data-mining/

Monday, 9 March 2015

Internet Data Mining - How Does it Help Businesses?

Internet has become an indispensable medium for people to conduct different types of businesses and transactions too. This has given rise to the employment of different internet data mining tools and strategies so that they could better their main purpose of existence on the internet platform and also increase their customer base manifold.

Internet data-mining encompasses various processes of collecting and summarizing different data from various websites or webpage contents or make use of different login procedures so that they could identify various patterns. With the help of internet data-mining it becomes extremely easy to spot a potential competitor, pep up the customer support service on the website and make it more customers oriented.

There are different types of internet data_mining techniques which include content, usage and structure mining. Content mining focuses more on the subject matter that is present on a website which includes the video, audio, images and text. Usage mining focuses on a process where the servers report the aspects accessed by users through the server access logs. This data helps in creating an effective and an efficient website structure. Structure mining focuses on the nature of connection of the websites. This is effective in finding out the similarities between various websites.

Also known as web data_mining, with the aid of the tools and the techniques, one can predict the potential growth in a selective market regarding a specific product. Data gathering has never been so easy and one could make use of a variety of tools to gather data and that too in simpler methods. With the help of the data mining tools, screen scraping, web harvesting and web crawling have become very easy and requisite data can be put readily into a usable style and format. Gathering data from anywhere in the web has become as simple as saying 1-2-3. Internet data-mining tools therefore are effective predictors of the future trends that the business might take.

If you are interested to know something more on Web Data Mining and other details, you are welcome to the Screen Scraping Technology site.

Source: http://ezinearticles.com/?Internet-Data-Mining---How-Does-it-Help-Businesses?&id=3860679

Wednesday, 4 March 2015

Why Outsourcing Data Mining Services?

Are huge volumes of raw data waiting to be converted into information that you can use? Your organization's hunt for valuable information ends with valuable data mining, which can help to bring more accuracy and clarity in decision making process.

Nowadays world is information hungry and with Internet offering flexible communication, there is remarkable flow of data. It is significant to make the data available in a readily workable format where it can be of great help to your business. Then filtered data is of considerable use to the organization and efficient this services to increase profits, smooth work flow and ameliorating overall risks.

Data mining is a process that engages sorting through vast amounts of data and seeking out the pertinent information. Most of the instance data mining is conducted by professional, business organizations and financial analysts, although there are many growing fields that are finding the benefits of using in their business.

Data mining is helpful in every decision to make it quick and feasible. The information obtained by it is used for several applications for decision-making relating to direct marketing, e-commerce, customer relationship management, healthcare, scientific tests, telecommunications, financial services and utilities.

Data mining services include:

•    Congregation data from websites into excel database

•    Searching & collecting contact information from websites

•    Using software to extract data from websites

•    Extracting and summarizing stories from news sources

•    Gathering information about competitors business

In this globalization era, handling your important data is becoming a headache for many business verticals. Then outsourcing is profitable option for your business. Since all projects are customized to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure can be realized.

Advantages of Outsourcing Data Mining Services:

•    Skilled and qualified technical staff who are proficient in English

•    Improved technology scalability

•    Advanced infrastructure resources

•    Quick turnaround time

•    Cost-effective prices

•    Secure Network systems to ensure data safety

•    Increased market coverage

Outsourcing will help you to focus on your core business operations and thus improve overall productivity. So data mining outsourcing is become wise choice for business. Outsourcing of this services helps businesses to manage their data effectively, which in turn enable them to achieve higher profits.

This article is courtesy of Flori Lee - an executive at Outsourcing Web Research offer high quality and time bound comprehensive range of data mining services at affordable rates. We are specialized in providing data mining services at 60% less data mining rates.

Source: http://ezinearticles.com/?Why-Outsourcing-Data-Mining-Services?&id=3066061

Monday, 2 March 2015

Data Mining and Financial Data Analysis

Introduction:

Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent, proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.

Objective:

1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:
Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.

Text:

Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

ProfitSystem fx Profit Driver by CCH Tax and Accounting provides a wide range of financial diagnostics and analytics. It provides data in spreadsheet form and can calculate benchmarking against industry standards. The program can track up to 40 periods.

Source: http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017